3,692 research outputs found

    Influence of Disorder Strength on Phase Field Models of Interfacial Growth

    Get PDF
    We study the influence of disorder strength on the interface roughening process in a phase-field model with locally conserved dynamics. We consider two cases where the mobility coefficient multiplying the locally conserved current is either constant throughout the system (the two-sided model) or becomes zero in the phase into which the interface advances (one-sided model). In the limit of weak disorder, both models are completely equivalent and can reproduce the physical process of a fluid diffusively invading a porous media, where super-rough scaling of the interface fluctuations occurs. On the other hand, increasing disorder causes the scaling properties to change to intrinsic anomalous scaling. In the limit of strong disorder this behavior prevails for the one-sided model, whereas for the two-sided case, nucleation of domains in front of the invading front are observed.Comment: Accepted for publication in PR

    Interface Equations for Capillary Rise in Random Environment

    Get PDF
    We consider the influence of quenched noise upon interface dynamics in 2D and 3D capillary rise with rough walls by using phase-field approach, where the local conservation of mass in the bulk is explicitly included. In the 2D case the disorder is assumed to be in the effective mobility coefficient, while in the 3D case we explicitly consider the influence of locally fluctuating geometry along a solid wall using a generalized curvilinear coordinate transformation. To obtain the equations of motion for meniscus and contact lines, we develop a systematic projection formalism which allows inclusion of disorder. Using this formalism, we derive linearized equations of motion for the meniscus and contact line variables, which become local in the Fourier space representation. These dispersion relations contain effective noise that is linearly proportional to the velocity. The deterministic parts of our dispersion relations agree with results obtained from other similar studies in the proper limits. However, the forms of the noise terms derived here are quantitatively different from the other studies

    Thermohydrodynamics of boiling in a van der Waals fluid

    Get PDF
    We present a modeling approach that enables numerical simulations of a boiling Van der Waals fluid based on the diffuse interface description. A boundary condition is implemented that allows in and out flux of mass at constant external pressure. In addition, a boundary condition for controlled wetting properties of the boiling surface is also proposed. We present isothermal verification cases for each element of our modeling approach. By using these two boundary conditions we are able to numerically access a system that contains the essential physics of the boiling process at microscopic scales. Evolution of bubbles under film boiling and nucleate boiling conditions are observed by varying boiling surface wettability. We observe flow patters around the three-phase contact line where the phase change is greatest. For a hydrophilic boiling surface, a complex flow pattern consistent with vapor recoil theory is observed.Peer reviewe

    Many-particle diffusion in continuum: Influence of a periodic surface potential

    Get PDF
    We study the diffusion of Brownian particles with a short-range repulsion on a surface with a periodic potential through molecular dynamics simulations and theoretical arguments. We concentrate on the behavior of the tracer and collective diffusion coefficients DT(θ) and DC(θ), respectively, as a function of the surface coverage θ. In the high friction regime we find that both coefficients are well approximated by the Langmuir lattice-gas results for up to θ≈0.7 in the limit of a strongly binding surface potential. In particular, the static compressibility factor within DC(θ) is very accurately given by the Langmuir formula for 0⩽θ⩽1. For higher densities, both DT(θ) and DC(θ)show an intermediate maximum which increases with the strength of the potential amplitude. In the low friction regime we find that long jumps enhance blocking and DT(θ) decreases more rapidly for submonolayer coverages. However, for higher densities DT(θ)/DT(0) is almost independent of friction as long jumps are effectively suppressed by frequent interparticle collisions. We also study the role of memory effects for many-particle diffusion.Peer reviewe

    Dynamics and Kinetic Roughening of Interfaces in Two-Dimensional Forced Wetting

    Full text link
    We consider the dynamics and kinetic roughening of wetting fronts in the case of forced wetting driven by a constant mass flux into a 2D disordered medium. We employ a coarse-grained phase field model with local conservation of density, which has been developed earlier for spontaneous imbibition driven by a capillary forces. The forced flow creates interfaces that propagate at a constant average velocity. We first derive a linearized equation of motion for the interface fluctuations using projection methods. From this we extract a time-independent crossover length ξ×\xi_\times, which separates two regimes of dissipative behavior and governs the kinetic roughening of the interfaces by giving an upper cutoff for the extent of the fluctuations. By numerically integrating the phase field model, we find that the interfaces are superrough with a roughness exponent of χ=1.35±0.05\chi = 1.35 \pm 0.05, a growth exponent of β=0.50±0.02\beta = 0.50 \pm 0.02, and ξ×v1/2\xi_\times \sim v^{-1/2} as a function of the velocity. These results are in good agreement with recent experiments on Hele-Shaw cells. We also make a direct numerical comparison between the solutions of the full phase field model and the corresponding linearized interface equation. Good agreement is found in spatial correlations, while the temporal correlations in the two models are somewhat different.Comment: 9 pages, 4 figures, submitted to Eur.Phys.J.

    Interpreting eddy covariance data from heterogeneous Siberian tundra : land-cover-specific methane fluxes and spatial representativeness

    Get PDF
    The non-uniform spatial integration, an inherent feature of the eddy covariance (EC) method, creates a challenge for flux data interpretation in a heterogeneous environment, where the contribution of different land cover types varies with flow conditions, potentially resulting in biased estimates in comparison to the areally averaged fluxes and land cover attributes. We modelled flux footprints and characterized the spatial scale of our EC measurements in Tiksi, a tundra site in northern Siberia. We used leaf area index (LAI) and land cover class (LCC) data, derived from very-high-spatial-resolution satellite imagery and field surveys, and quantified the sensor location bias. We found that methane (CH4) fluxes varied strongly with wind direction (-0.09 to 0.59 mu gCH(4)m(-2) s(-1) on average) during summer 2014, reflecting the distribution of different LCCs. Other environmental factors had only a minor effect on short-term flux variations but influenced the seasonal trend. Using footprint weights of grouped LCCs as explanatory variables for the measured CH4 flux, we developed a multiple regression model to estimate LCC group-specific fluxes. This model showed that wet fen and graminoid tundra patches in locations with topography-enhanced wetness acted as strong sources (1.0 mu gCH(4) m(-2) s(-1) during the peak emission period), while mineral soils were significant sinks (-0.13 mu gCH(4) m(-2) s(-1)). To assess the representativeness of measurements, we upscaled the LCC group-specific fluxes to different spatial scales. Despite the landscape heterogeneity and rather poor representativeness of EC data with respect to the areally averaged LAI and coverage of some LCCs, the mean flux was close to the CH4 balance upscaled to an area of 6.3 km(2), with a location bias of 14 %. We recommend that EC site descriptions in a heterogeneous environment should be complemented with footprint-weighted high-resolution data on vegetation and other site characteristics.Peer reviewe
    corecore